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Driven-dissipative spin chain model based on exciton-polariton condensates
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An infinite chain of driven-dissipative condensate spins with uniform nearest-neighbor coherent coupling
is solved analytically and investigated numerically. Above a critical occupation threshold the condensates
undergo spontaneous spin bifurcation (becoming magnetized) forming a binary chain of spin-up or spin-down
states. Minimization of the bifurcation threshold determines the magnetic order as a function of the coupling

strength. This allows control of multiple magnetic orders via adiabatic (slow ramping of) pumping. In addition
to ferromagnetic and antiferromagnetic ordered states we show the formation of a paired-spin ordered state
...t ...) as a consequence of the phase degree of freedom between condensates.
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I. INTRODUCTION

Many-body spin systems, both classical and quantum, have
found applications in a number of fields of rising complexity.
Their Hamiltonians (Ising, XY, Heisenberg, Sherrington-
Kirkpatrick, etc.) have been used to study collective behaviors
such as familiarity recognition in neural networks [1], hys-
teresis in DNA interactions [2], combinatorial optimization
problems in logistics, patterning, and economics [3,4]. Besides
their wide application, controllable spin lattices also offer
insight into physical problems such as frustration [5,6], spin-
ice [7,8], spin-wave dynamics [9,10], domain wall motion
[11-13], and spin-glass formation [3,14]. A driven-dissipative
spin lattice, where both phase and spin of the vertices are
free, has yet to be addressed. Here, in contrast to entropy
and minimum energy principles (as in the Ising model), the
stationary physics of the system is governed by the balance
of gain and decay with remarkably different solutions [15].
Currently, only limited investigation has been devoted to
driven-dissipative lattice systems where recent works have
proposed “simulators” based on interacting exciton-polariton
condensates [16] and Ising machines with degenerate optical
parametric oscillators [17].

Nonresonantly excited spinor exciton-polariton (or simply
polariton) condensates [18] have developed into a popular
platform for cutting edge optoelectronic and optospintronic
technologies [19,20]. The driven-dissipative condensates are
realized by matching the gain and the decay of polaritons
through continuous external driving of either optical or
electrical nature. These macroscopic coherent states possess a
spin and a phase degree of freedom, strong nonlinearities,
and a small effective mass, allowing them to interact and
synchronize with other spatially separate condensates over
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long distances (hundreds of microns) [21], making them
interesting candidates for driven-dissipative spin lattices.
Recently it was reported that a spinor polariton condensate
bifurcates at a critical pump intensity into either of two highly
circularly polarized states using a continuous linearly polar-
ized nonresonant excitation [22]. The emission polarization
is explicitly related to the polariton condensate pseudospin
orientation (from here on spin) [23]. The system has since
then been extended to polariton condensate spin pairs [24] and
closed chains [25] which can controllably display alignment
of antiferromagnetic (AFM) and ferromagnetic (FM) nature.
This spin degree of freedom offers a unique way to study
ordering amongst coupled spin vertices in various lattices.

In this paper, we extend such polariton condensates to
an infinite chain model and present methods of controllably
producing different spin-ordered chains. We solve exactly and
numerically analyze the stationary states of the infinite chain
of spin-bifurcated condensates with nearest-neighbor same-
spin coupling in the tight-binding approach. The stationary
solutions correspond to ferromagnetic, antiferromagnetic, and
paired-spin order states of two-up and two-down spins (P)
(see Fig. 1). States characterized by FM bonds with zero
phase slip and AFM bonds with & phase slip are shown
to have a minimum bifurcation threshold, and are stable
against long-wavelength fluctuations. Monte Carlo trials with
adiabatic ramping of the pump intensity on a cyclic system
of four condensates give a phase diagram in full agreement
with the predicted minimum threshold winners as a function
of coupling strength. This clear hierarchy for the probability
of formation is an important prerequisite for a spin-lattice
simulator. Nonadiabatic trials on the other hand result in a
complex phase diagram, as a result of the initial condition
progressing to its nearest phase space attractor. In addition to
spatially uniform stationary states, we find that frustrated or
defect states with oscillating spinors can appear in this system.
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FIG. 1. (a) Schematic showing spinor condensates coupled to-
gether through the same-spin coupling parameter J in an infinite
chain. States with equal number of bond types per condensate can be
categorized as (b) FM, (c) AFM, and (d) paired (P). Red and blue
lines correspond to FM and AFM bonding, respectively.

II. THEORY

Driven-dissipative polariton condensates can be accurately
modeled using a coherent macroscopic spinor order parameter
U = (W, ,V_)T where W, are the spin-up and spin-down
components, respectively. The order parameter is governed
by a complex Ginzburg-Landau equation where we neglect
reservoir effects due to condensation taking place spatially
separate from the nonresonant pump spots. The gain and
dissipation can thus be directly modeled using effective
gain and decay parameters [26], similar to the pair of
polariton condensates, where the transport of polaritons from
one condensate to another can be regarded as a form of
coherent coupling in the tight-binding approximation [27].
A tight-binding model allows fast numerical simulation of an
isotropic uniform system representing the overlapping, equally
spaced, polariton condensates. This approximation remains
valid when condensates occupy the lowest-energy mode of the
trap at zero momentum, which was reported in Ref. [22]. The
validity of the approximation is further strengthened by recent
experiments and simulation on both condensate pairs [24]
and small closed chains [25]. A system of many condensates
labeled by index n can be described by coupled dynamical
equations
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where the sum is over nearest neighbors. Here we define
g(Sy) = —W +T + 1S, as the pumping-dissipation imbal-
ance, I" is the (average) dissipation rate, W is the incoherent
in-scattering (or pump rate), and n defines the gain-saturation
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nonlinearity. The birefringence of the system corresponds to
the splitting of the XY -polarized states in both energy (¢) and
decay rate (y) [28,29], an effect which can be considered as
intra-Josephson tunneling between the spins. The interaction
parameters are written as & = o + o, @ = o] — otp, Where o
and o, are the same-spin and opposite-spin polariton-polariton
interaction constants, respectively. Equation (2) is the average
condensate population and Eq. (3) is the circular polarization
intensity (considered as a spin here).

Finally, J is the same-spin Josephson coupling constant,
which is a complex number in the case of driven-dissipative
condensates. While Re(J) > 0 depicts the strength of the
coherent coupling, Im(J) describes the dissipative coupling.
The latter appears either due to the difference of the lifetimes
of the symmetric and antisymmetric single-polariton states
[30], or the difference of their respective pumping rates. We
note that the Josephson coupling term in the tight-binding
picture can be derived from a 2D model, with continuous
potential and the choice of some localized tight-binding wave
functions [27]. The Josephson coupling term is given by an
overlap integral proportional to the potential. In our system,
it is well established that the continuous potential has both
real and imaginary components coming from the spatially
nonuniform nonresonant pump, which causes both repulsion
and gain. Consequently, the Josephson coupling term picks
up both real and imaginary parts, as established in Ref. [27].
In the following, we assign small Im(J) < O to simulate the
intersite damping and to account for energy relaxation. From a
numerical perspective, the presence of a small damping value
Im(J) < 0 accelerates the convergence of calculations towards
the stationary spin states of the chain.

The critical pump intensity for condensation in a single
condensate is determined by the lowest decay rate mode and
can be written Wy, = I' — y, resulting in a linearly polarized
emission. At higher pump intensities the order parameter
bifurcates into either a spin-up or spin-down state due to
instability in the linearly polarized modes due to their splitting
(e +iy) and polariton-polariton interactions. For a single
condensate, the critical bifurcation threshold is [22]

2 2
Wbif=Wlin+77€ . )
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In the following, we work above this critical pump threshold
such that each condensate is either in a “spin-up” or a “spin-
down” state.

Formally, for identical lattice sites, the symmetry-
conserving stationary solutions can be found by using the
following spinor ansatz:

“Iln+1 — e’¢zx+1 \Ijn

Y, = €16, Y,

(FM bonds), 5
(AFM bonds), (6)

where (¢,+1) is the phase shift moving from the condensate in
question to its nearest neighbor n + 1, and is to be determined.
Equation (1) can now be written as
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This corresponds to a single condensate with complex renor-
malized splitting €; and energy shift w;, arising from AFM
bonds and FM bonds, respectively. The strength of these
parameters depends on the relative phases between nearest
neighbors in the system. The modified parameters of a chain
with two nearest neighbors can be written as

€7 =€+ J(Spp1€ P + 8,169, (3)
wy = —=J((1 = 8,41)e' + (1 —8,_1)e'""),  (9)

where §,+; = 1,0 for AFM or FM bonding, respectively,
between the nearest neighbors of condensate n. Here we have
made the assumption that €, and w, are independent of n.

The problem of FM and AFM bonded condensates has
thus been reduced to a single condensate with a known
solution [22]. The requirement for site-independent ¢; and
wyj, and cyclic boundary condition of integer 27 for the phase
accumulated around the closed chain, restricts the possible
phases of the bonds. For chain systems of either FM or AFM
ordering it can be shown that the coupling results in (see
Appendix E)

gﬁ*FM =e€+2J cosrm/N), o}™ =0, (10)
eM=¢, oM =—-2Jcos@rm/N), (11

where m = 0,1,2, ... and N is the number of condensates in
the chain. For AFM chains, N must be an even number since
the spin unit cell is |1 ). In addition, there is a paired-spin
(P) state, where each site has one FM and one AFM bond,
and the spin unit cell is |11 ). P solutions have a)? =4J
and € =€ £ J, where the signs are independent. For the
remainder of the paper, we analyze a chain of four condensates,
since this is the minimum unit cell needed to fully capture the
spin physics. It is characterized by 10 distinct solutions (see
Appendix A). Furthermore, we confirm the analogy between
the solutions of the tight-binding model [Eq. (1)] to a four
condensate chain accounting for the (x,y) spatial degrees of
freedom (see Appendix F).

III. RESULTS

To identify the stable stationary solutions, we perform a
long-wavelength stability analysis (see Appendix B) for the
set of coupled equations describing linear fluctuations along
the periodic four condensate chain. Three lowest bifurcation
threshold solutions of FM, AFM, and P spin order are found
to have negative real-part Lyapunov exponents A within the
first Brillouin zone of the chain (see Fig. 2), and hence
are completely stable against fluctuations traveling along the
chain. These solutions are characterized by a zero phase slip
between FM bonded condensates and s phase slip between
AFM bonded condensates (see Appendix D for parameter
values).

To calculate the phase diagram and verify the analysis,
we perform Monte Carlo simulations of the periodic four
condensate chain as a function of pump intensity W and
coupling strength J. Figure 3 shows the result of 30 Monte
Carlo (MC) trials at each site over a 100 x 100 pixel map in
parameter space. Each trial is seeded repeatedly with a weak
random number at small time steps (less than the polariton
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FIG. 2. Stability analysis. Plot of Lyapunov exponents A vs k
vector of fluctuations for three lowest bifurcation threshold chain
solutions (a)—(c) at W = 1.2Wy, J /€ = 0.3. For all k the exponents
stay negative corresponding to a stable solution.

lifetime 1/ T'). For a single condensate this replicates the ran-
dom orientation of the binary pseudospin above the bifurcation
threshold. The forceful introduction of random fluctuations
to both the phase and the amplitude of the condensate wave
function tests its stability in a relatively simple manner. A more
accurate connection to statistical mechanics takes advantage
of the truncated Wigner approximation and stochastic set of
equations to accurately represent the quantum noise of the
polariton gas [31,32]. For each realization of the numerical
experiment, the pump intensity is linearly increased from
Wo = 0.5Wys to W at a rate 107% x Wyt ps’l, similar to the
ramp times achieved in experiments [22]. Three distinct phases
corresponding to the stable AFM, P, and FM stationary spin
patterns are observed, as identified by the long-wavelength
stability analysis. We stress that the observed numerical
hierarchy of each state as a function of J is in excellent
agreement with recent experimental observations [25].

To explain the regimes of each state (red areas in Fig. 3),
we plot the spin bifurcation threshold power Wy;s against J in
Fig. 4. The thresholds are calculated using Eq. (4), with € —
Re(ey),y — y +Im(ey),andT" — I' 4+ Im(w;). As the pump
power is slowly increased, the state that reaches the bifurcation
threshold first wins, since it has time to stabilize before com-
peting states can bifurcate. The calculated phase boundaries of
J/e =0.42,0.91 for the AFM-P and P-FM boundaries are in
close agreement with the Monte Carlo simulations of Fig. 3.
The asymptotic behavior in Fig. 4 for the AFM and P states
at J/e = 0.5 and J/e = 1, respectively, is a consequence of
€ approaching zero, destabilizing the stationary solution. We
note that the ramp time of the pump can influence the phase
diagram. Fast ramp times soften the competitive advantage of
a low spin-bifurcation threshold, resulting in a blurring of the
phase boundaries (see Appendix C). The depression at low W
in Fig. 3(c) corresponds to an area of instability outlined by
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FIG. 3. Phase diagram of spin order. Probability of a spin state
appearing in 30 realizations of numerical experiment, where the pump
is slowly ramped to a final value W. (a)—(c) AFM, P, and FM solutions
with the lowest threshold make up 90% of the data. Black dashed lines
in panel (c) indicate regimes where the solution becomes unstable. (d)
A population of oscillating limit cycle solutions is noticeable (2.1%)
for low coupling strengths.

the black dashed line calculated using linear stability analysis
for fluctuations at k = 0 (see Appendix B). The unstable FM
solutions are replaced by stable P solutions as can be seen from
the small rise in P states at low W.

We note that the MC iterations do not always result in
a stationary AFM, P, or FM steady state described above.
Nonstationary symmetry-breaking solutions can arise close to
stability boundaries due to the finite ramp rate of the pump.
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FIG. 4. Spin-bifurcation threshold vs coupling strength J. Wg?f)
is the spin-bifurcation threshold of an uncoupled condensate. The
arrows indicate points where the AFM solution changes to P (J /e =
0.42) and P changes to FM (J/e = 0.91). The points are in good
agreement with phase boundaries in Fig. 3.
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FIG. 5. (a) Normalized pseudospins of the four condensates in
the limit cycle solution sampled from the data in Fig. 3(d). Average
spin has converged but multiple energies cause the pseudospins to
precess. Plotted trajectories are derived from the right panel and have
not been scaled. (b) Time evolution of this state over 260 ps showing
the steady oscillation of the circular polarization component of the
condensates.

The analysis of highly nontrivial evolutions of the system in
this case is beyond the scope of this work.

In addition to the stationary states, an oscillating limit
cycle solution composed of three spins against one opposite
spin is often observed for low J as shown in Fig. 3(d)
and Fig. 5(a). A time trace of the S, spin component of
this state is plotted in Fig. 5(b). Though the average spin
on each site has converged, the spin precession indicates a
superposition of states that are phase locked. Interestingly,
the energy of the spinor components of the limit cycle state
correspond to that of P state, w; = —J ande; = € — J, except
for the minority spin population in the opposing condensate
(e.g., W,4 polaritons from Fig. 5) which also populates a
separate peak in energy. Thus the limit cycle solution can be
characterized as a “frustrated P state,” described by multiple
energies w; and splittings €;, and resulting in an oscillating
spinor and frequency comb emission, similar to that discussed
in Ref. [33]. In larger chains, the limit cycle states can appear
as a result of inhomogeneity in the chain couplings. Being
frustrated solutions, the limit cycle states can be perturbed and
allowed to collapse into the stationary P state although the
exact mechanism is not investigated here. If the perturbation
is too weak the same limit cycle is recovered, indicating that
the limit cycle is stable.

IV. CONCLUSION

In conclusion, we have solved analytically and investi-
gated numerically solutions in an infinite chain of coupled
driven-dissipative spinor polariton condensates. A mixture of
intraspin coupling and nearest-neighbor intercoupling allows
not only controllable formation of antiferromagnetic states
or ferromagnetic states, but also shows solutions with mixed
antiferromagnetic and ferromagnetic bonding. We find that
minimum bifurcation threshold determines the spin order in
the chain which agrees with recent experimental findings [25].
The one-to-one correspondence between the spin and the phase
slips of the lowest threshold states makes this system binary
and opens the possibility of mapping it to binary models
such as the 1D Ising Hamiltonian, where the minimization of
loss (bifurcation threshold) replaces minimization of energy.
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FIG. 6. Schematic showing 10 solutions of a four condensate chain system. Red dashed lines depict in-phase condensates (¢, = 0)
and blue dotted lines antiphase condensates (¢,+1 = £m). Orange and cyan whole lines in panels (c) and (f) correspond to phases causing a

cancellation in the coupling, i.e., e+l 4 eitn-1 = (),

Our work is an important step towards understanding and
controlling spin order in open-dissipative nonlinear spin
lattices.
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APPENDIX A: COMPLETE SOLUTIONS OF FOUR
CONDENSATE CHAIN SYSTEM

It has been established that stationary chain solutions of
either FM or AFM ordering results in a modified single-
condensate dynamical equation [Eq. (7)] with only shifted
parameters according to Eqgs. (10) and (11). Stationary chain
solutions of mixed FM and AFM bonding (P solution) follow
the same procedure but with only 7 or zero phase slips possible
between condensates. Focusing on a chain of four condensates
(smallest cell to encompass all spin orderings periodically) we
find 10 distinct solutions which are summarized in Fig. 6.
As the number of condensates in the chain increases, more
solutions of FM or AFM ordering become available but the
number of P solutions remains fixed. It’s worth mentioning
that panels (c) and (f) are special cases where the phases
between neighboring condensates result in a cancellation such
that w; = 0 and €; = € in Eqgs. (8) and (9).

APPENDIX B: LINEAR STABILITY ANALYSIS

In this section we formulate the linear stability analysis for
a periodic solution for an infinite chain of condensates. This

solution is constructed by periodic repetition of a particular
solution for the closed ring of four condensates, and it has, in
general, the period 4a, where a is the nearest-neighbor dis-
tance. The perturbed solution can be written as w;”” + (Sw;m),
where m is the number of the condensate. The unperturbed
solution is periodic, Y™ = "™, and the perturbation is
chosen in the form of plane wave (& = 1)

Sw:(tm) — ugl’:”)eikmU‘f‘)Ll + UT)*e—ikmu‘f‘)n*l‘ (Bl)

Here the complex amplitudes are also set to be periodic, u(f) =

ui"H) and vi" ) = vi" ) There are 16 linearized equations for
the amplitudes and 16 Lyapunov exponents A(k). The solution
is stable when all of them satisfy Re{A(k)} < 0.

The linearized equations for the U=
{uﬂl),vg),u(_l),v(_l), e ,14(_4),1)(_4)}T can be written in matrix
form as iAU = M - U, where the 16 x 16 matrix M can be
presented in the 4 x 4 blocks form:

vector

M(l) M J 04,4 M_]
M; MO My 044
O My MO M,
My Oy My M

M = (B2)

Here, M® is the matrix describing the fluctuations in the nth
condensate within the elementary cell, n = 1,2,3,4, 04 4 is the
4 x 4 zero matrix, and M ; is the same-spin coupling between
nearest neighboring condensates.

For the matrices in (B2) we have

M = M + M + My, + M+ M + M. (B3)

The first matrix is defined by the energy of nth condensate

“E" 0 0 0
) 0 E® 0 0
M= o 0 —E® o (B4)
o 0 0 E®
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The second matrix arises from the harvest and saturation rates of the condensate from the static reservoir

; 2|1lf_(f)|2(-|)-*|1/f(_n)|2 (gllfin))z (n) llf(_(:;l (_:))** lﬂ(_(f)liﬁ(_(n)) :
M(”) _ _ﬂ (1/’+ )2 2|W+ |2 + |1//— |2 ¢+ w— 1/,+ I/f— _ LGI[ (BS)
w 4 (n)* 4 (n) (n)_, (n) 2 (n)2 )2 (n)\2 2 ’
vl v WP o 1) S
AT AR A (p ") 2091 4 1y

where G =T" — W and I is the identity matrix.
components:

The third and the fourth matrices arise from coupling between up and down

0 0 -1 0 0 0 -1 0
_iyfo o o -1 _¢[fo o o0 1
MV—E -1 0 0 0} Mf_z -1 0 0 0 (B0)
0 -1 0 0 0 1 0 0
The fifth and the sixth matrices arise from the interactions:
2P () 0 0
o = a [y 2w o 0
“T21 0 0 2P @)
0 0 =@ 2P
|1/f(_n)|2 O( ) 1//.({))!0(_"2*) 1//.({'))1#(_"2 )
w02 0 e L R VA VA Ve Vi
M) = > ) ) o - (B7)
R /0 [/0a" (g 0
—yy gy 0 —lyiP

The final matrix describes the same-spin coupling between the

nearest-neighboring condensates

(

APPENDIX C: NONADIABATIC MONTE CARLO FOR
UNDAMPED FOUR CONDENSATE CHAIN

Here we give results analogous to Fig. 3 but with damping

-J 0 0 0 absent [Im(J) = 0] and instantaneous switching of the pump
M, = costka)f 0 J* 0 O (BS) intensity at its mark value. Unlike Fig. 3 where states with
2 0 0 —-J 0 the lowest bifurcation threshold were dominant, we uncover a
0 0 o J more complex probability map in Fig. 7 through 30 MC trials
” X [Occ.]
FM: wy = —2J FM: wy = +2J
- 15 04 30
Y
U
4
’l
! l' 25
’
4
L
0517
I
20
0
1 1.2 14
15
AFM: €5 =€ Piwyj=—-J,ej=€¢—J
15 > 15
N.-
=410
1 3
. ',_-;‘\"‘.* S |
05 % Gl #
N t 0 L1,
1 12 14 1 12 14
W/Whit W/ W,

FIG. 7. Color maps showing the likelihood of a s

pin state appearing through 30 MC iterations for each pixel in a 100 x 100 map using

Eq. (1). Different from Fig. 3 we get a noticeable population in three more states (FM: w; = 0; AFM: €; = €¢; FM: w; = +2J). Black dashed
lines are predicted stability boundaries calculated using Eq. (B2) for k = 0.
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bounded by their k = 0 stability regions (black dashed lines)
predicted by Eq. (B2).

Figure 7 shows 77% of the data divided between six
solutions of the four condensate chain. The remaining four
solutions from Fig. 6 are not observed since they are unstable
over the entire J — W map. Another 11% of the data (not
shown here) ended in oscillating limit cycle states discussed
in Fig. 5. The remaining 12% were categorized as nonstation-
ary/chaotic.

The complex features of the probability maps in Fig. 7
as opposed to the more simplistic ones in Fig. 3 highlight
the important role of damping in the system and adiabatic
switching of the pump intensity. Intuitively, the complicated
features in Fig. 7 arise from the order parameter overshooting
many possible stable minima in the phase space of the system.
It then becomes a matter of the nearest and strongest attractor
to stabilize the solution.

APPENDIX D: NUMERICAL METHODS

A QR algorithm is implemented to solve the eigenvalue
problem of Eq. (B2). Equation (1) is solved using a variable-
order Adams-Bashforth-Moulton predictor-corrector method.
The parameters used for 0D simulations were n = 0.02 ps~!,
'=0.1 ps’l, €= 0.04ps’1, y =0.2¢,a; = 0.01 ps’l,az =
—0.5¢1, and Im(J)/Re(J) = 0.1.

The parameters used for 2D simulations of Eq. (F1)
were m =5 x 107mgy, n=0.01 ps!, T =0.2 ps7!, € =
0.015 ps’l, y = 0.2¢, oy = 0.003 ps’l, oy = —0.5aq, d =
12 um, o0 = 10.3 um, and A = 0.1, where m is the free
electron rest mass.

APPENDIX E: DERIVATION OF THE COUPLING
CONTRIBUTION IN CHAIN SYSTEMS

Consider the stationary condensate chain composed entirely
of either FM or AFM bonds. According to Egs. (8) and (9),
each condensate with two nearest neighbors is presented with
a term

w; = —J(e" +e¥), (ED)

for two FM bonds or
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for two AFM bonds. Here ¢; ; is the phase difference of
moving from the condensate in question to its neighbor. This
contribution can in general be a complex number appearing
equally in each condensate. In this section we show that this
number must stay real for a chain system. Note that in Egs. (8)
and (9), for the infinite chain, a phase slip from condensate n to
n + 1is written ¢, ;. Here, with four condensates periodically
connected, we adapt a slightly simpler notation illustrated
in Fig. 8. The lattice unit cell of the chain system is one
condensate and one bond. Assuming that the chain closes on
itself, the number of free variables (¢;) is then equal to the
number of independent equations. The following can then be
generalized to any number of condensates in a chain.

Let’s now imagine four condensates locked in a chain. We
can classify the phase jumps going clockwise as {¢1,2,93,04}
(see Fig. 8). It is obvious that w; and €; must be equal for all
condensates in the chain in order to have a steady state. Thus
the phase contribution e'¥ + ¢/ must be the same for all
condensates. This means that the four stationary condensates
allow us to write

ad + e I = o'?2 + e 1 = o'¥3 + e 12 — Pl +e—lw3_
(E3)

Writing €' = a; +ib;, where a;,b; € R, it’s then easy to
show that

a) = as, (E4)
ay = dyg, (ES)
by = by = by = by. (E6)

The real part of the contribution e’ + ¢ is thus equal
for each condensate but the imaginary part gets canceled.
Consequently, from |e!%|?> = 1 we come to the solution a; =
Fap, which can more clearly be written

cos (¢1) = F o8 (¢2). (E7)

The minus sign in Eq. (E7) corresponds to a cancellation
in the coupling with no shift in w; or €;, whereas the
plus sign mandates the opposite. Applying the constraint
el@iretested) — 1 corresponding to a full cycle in our four
condensate chain we come to the conclusion that the only
possible values of coupling in the latter case are cos (¢;) =

€ =€+ J(Y + &%), (E2) cos(2mm/N), where m = 0,1,2,... and N is the number
Y1 -P1
— -

®© O

P4 P2

© O

—
¥3

Rz

® ©®
®

©

Q)
©

P2

FIG. 8. Schematic of the four condensate chain. (Left) Phase jumps ¢; take place moving from one condensate to the next. (Middle) W,
gets a contribution ¢’¢! 4 =%, (Right) W, gets a contribution e'#? + ¢~
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FIG. 9. Density and phase maps of the AFM, P, and FM spin states from Eq. (F1). Evaluating the phase difference between condensates
of dominant spin (marked with black crosses) in each solution confirms that AFM bonds favor 7 phase difference and FM bonds zero phase

difference.

of condensates in the chain. As the number of condensates
increases in the chain, more solutions become available.

The same procedure can be applied to a state where each
condensate has one FM and one AFM bond (P solutions). Then
only e¥ = =1 satisfies the chain.

APPENDIX F: FOUR CONDENSATE CHAIN WITH
SPATIAL DEGREES OF FREEDOM

The tight-binding model [Eq. (1)] offers a simple solution
to the stationary spin patterns in the condensate chain. We
find that these exact solutions can also be produced with
little difficulty accounting for the spatial degree of freedom.
The complex Ginzburg-Landau equation can be written then
[26,34,35]:

|
v = 5[—1'(8(5) +yo)+ (1 —iA)

_ hv?
x(\aS+aS,0, —€0, — —— +gpP(r) | |V
m

(F1)

Here, m is the effective mass of the polaritons. The exciton
reservoir is taken to be completely static and the induced
repulsive potential is then given by an effective interaction
constant gp. The remainder of the parameters serve the same
purpose here as in the tight-binding model with W = P(r). We
note that modeling the system by coupling an exciton reservoir
rate equation to the order parameter only requires rescaling
of the parameters and does not critically affect the observed
solutions in Eq. (F1) when the decay rate of the reservoir is
taken to be large compared to the polariton lifetime [36].

The pump P(r)is a3 x 3 square arrangement of Gaussians
separated by the lateral distance d and with a FWHM ¢ which
then form a four potential minimum in a 2 x 2 arrangement
where the polaritons condense. In Fig. 9 we show three
solutions of different spin order in a closed four condensate
chain. The AFM, P, and FM solutions possess phase slips
corresponding to the lowest bifurcation threshold solutions
from Figs. 6(b), 6(d) and 6(g), and Figs. 3(a)-3(c). Each
solution can be achieved by either tuning the strength of
polariton interaction with the pump gp, or by increasing the
strength of the center Gaussian pump spot causing an increased
barrier between the condensates which effectively changes the
coupling strength J.
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