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Tracking spatial modes in nearly hemispherical
microcavities
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We measure experimentally the spatial intensity profiles and resonant frequencies of the transverse modes
of nearly hemispherical microcavities with cavity length and mirror curvatures below 10 �m. These reso-
nators possess axially symmetric Gauss–Laguerre-like modes, but do not display the frequency degeneracies
typical of large-scale optical cavities. It is possible to interpret these results using a paraxial model of cavity
propagation that includes nonparabolic optical elements. © 2007 Optical Society of America
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Microcavities are one of the most useful micro-optical
components because of the sharp resonances and
small volume of their modes. They can be applied in
many novel devices such as ultralow-threshold lasers
and miniaturized nonlinear optical components, en-
hanced emitters, tunable microfilters, enhanced sen-
sors, and resonant light–matter modulators [1–3].
Until now, the main microcavity structures studied
have been planar, pillar, photonic crystal, and whis-
pering gallery designs. Embedded quantum dots or
quantum wells inside pillar microcavities give en-
hanced emission and nonlinear optical response
[4–6]. On the other hand, the design and fabrication
of empty microcavities, which can be subsequently
filled with active (in)organic materials is difficult. For
example, planar microcavities are easy to fill, but
confine photons in only one direction [2]. We have re-
cently built cavities with spherical micromirrors that
overcome this problem: the planar structure of the
device allows for easy filling, while the spherical mi-
cromirror strongly confines the modes. Here we re-
port the experimental and theoretical characteriza-
tion of their transverse mode spectrum. This shows
some unexpected features: the modes are Gauss–
Laguerre (GL)-like and axially symmetric, but the
frequency degeneracies typical of GL modes, with dif-
ferent radial indices, are lifted.

Our planar-spherical microcavities [Fig. 1(a)] are
formed by assembling a template of latex spheres
and electrochemically growing gold around them.
The spheres are dissolved away, leaving hemispheri-
cal dishes of controllable height, which are combined
with gold-coated planar top mirrors to form a micro-
cavity (for fabrication details see [7]). These struc-
tures have the advantage of being very robust and
easy to fabricate. They are also widely tunable by
varying the cavity length, L, and the radius of curva-
ture, R, of the hemispherical dish. Such empty cavi-
ties can be filled with liquid crystals, dyes, or quan-
tum dots. Our previous work has shown that this
type of geometry is important for controlling defects
in incorporated liquid crystals and gives significantly
improved optical switching times [8]. Similar micro-

cavities have been subsequently suggested for modi-
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fying emission from single semiconductor quantum
dots [9].

By confining the light in the plane as well as verti-
cally, the cavity modes become discrete and split into
longitudinal and transverse modes [Fig. 1(b)]. While
paraxial theory is sufficient to describe such cavities
on scale lengths much larger than the wavelength of
light, at present there are no adequate theories for
these micrometer scale structures. Our previous
work using hemispherical dishes and gold-tipped op-
tical fibers showed that both transverse and longitu-
dinal modes can be seen [7], but did not resolve the
spatiospectral mode structure. Here we evanescently
couple incoherent white light from a blackbody
source through the thin gold at the base of the dish
mirror. The transmission spectra are recorded on a
confocally arranged fiber-coupled monochromator
and cooled CCD. Spectra are measured as the micro-
cavity is laterally scanned using piezoelectric stages,
allowing us to build up a map of the emerging spec-
tral modes at each position across the microcavity.

The experimentally measured transverse cavity
spectrum (Fig. 2) is superficially similar to the spec-
trum of a paraxial cavity with parabolic optical ele-
ments [10]. In such cavities the modes can be written
as Anpq=Gpq�r ,� ,z�ei�nz, where z is the coordinate
along the cavity axis, scaled to cavity length L, while
r and � are polar coordinates in the transverse plane.
The radial distances are in units of �L� /�, where � is
the optical wavelength. The three indices n, p, and q

Fig. 1. (Color online) (a) Geometry of microcavity (R, ra-
dius of curvature; L, cavity length; a, radius of flat bottom;
d, dish thickness) and experimental setup, with (b) typical
transmission spectrum spanning two longitudinal mode

families.
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are integers, with the longitudinal mode index n�0.
The function Gpq�r ,� ,z� is the transverse mode pro-
file and, in the plane of the minimum beam waist, is
given by

Gpq�r,�,z� =
��2r��q�

�2�w0

Lp
�q���2

r2

w0
2�e−r2/w0

2+iq�, �1�

where w0 is the minimum beam waist and Lp
�q��x� is

the generalized Laguerre polynomial of order p and
parameter �q� [11]. From this formula we see that the
radial index p�0 is equal to the number of zeros of
the field in the radial direction, while the azimuthal
index q is the phase winding number of the mode.
The frequency of a mode �n ,p ,q� in units of the cavity
round-trip frequency ���L=�c /L� is given by

�̃npq = n − �Au + �2p + q + 1���̃T, �2�

where the expected transverse mode spacing ��̃T

=arcsin��L /R� /�, and �Au is the phase shift on reflec-
tion from the Au film [12]. In this conventional limit,
transverse modes are equispaced and modes with the
same value of 2p+ �q� are frequency degenerate. If the
cavity is not axially symmetric, the mode structure
remains unaltered, but one has to use Cartesian co-
ordinates in Eq. (1) and express the function Gpq as
an appropriate product of Hermite polynomials and
Gaussian functions (Gauss–Hermite modes).

Here we show that, while Eqs. (1) and (2) capture
the qualitative features of the spectrum, there are
significant differences to be explained. Experimental
data (Fig. 2) on a typical cavity with R=10 �m, L
=6.5 �m clearly demonstrates the different families
of modes observed. Similar data is seen on many dif-
ferent microcavities, and for different cavity lengths.
In all cases circularly symmetric GL modes are seen
(inset shows detailed spatial maps of modes for dif-
ferent energies, indicated by arrows), rather than the
Hermite–Gauss modes observed in all macroscale
cavities. Invariably even slight astigmatism present
in every large-scale cavity is enough to split the

Fig. 2. (Color online) Radial intensity profiles of the trans-
mitted light as a function of energy, showing families of p
modes for a cavity L=6.5 �m, R=10 �m. Inset: spatial in-
tensity distributions at energies shown by arrows labeled
a–d.
modes into orthogonal linear families of TEmn modes,
but this effect is completely suppressed in these
micrometer-scale cavities. For each longitudinal in-
dex n, two families of GL modes are seen, each with
increasing azimuthal mode index, q=0,1,2,3,4,
which form annular modes of increasing diameter.
Surprisingly the q�0 modes are visible despite the
fact that they are forbidden in this symmetrical cou-
pling geometry (as the overlap integral between
pump and mode is zero). We believe that this symme-
try breaking is caused either by roughness around
the hole rim or by the fact that the illuminating
beam, even though it is of uniform intensity, may not
be spatially coherent across the hole of radius a at
the vertex of the spherical mirror (see Fig. 1). The ra-
dial peak intensity and radial width match the modes
of the model within 81%–98% of the fundamental
mode. Finally, careful analysis of the spectra (Fig. 2,
n=20 family) shows that the mode �p ,q�= �1,0� has a
slightly different frequency from the modes �p ,q�
= �0, ±2�, contrary to the prediction of Eq. (2).

The mode structure of the microcavities can be de-
termined analytically by solving the full Maxwell’s
equations with appropriate metal boundary condi-
tions at the gold surfaces and perfectly matched lay-
ers in the transverse plane [13]. However, studies of
pattern formation in VCSEL [14], of mode spectra in
microdisk cavities [15], and of ray dynamics in para-
bolic cavities [16] indicate that approximations nor-
mally used for macroscopic cavities are fairly accu-
rate also in cavities only a few wavelengths in size.
The good qualitative agreement between the spec-
trum of a paraxial cavity with parabolic mirror and
the experimental spectra and profiles suggests that
the paraxial theory is the correct framework to work
in but that we need to include nonparabolic optical
elements. This approach is also validated by close in-
spection of the cavity dish mirrors, which besides be-
ing spherical also have a flat circular central facet of
radius a to allow light to tunnel into the cavity (Fig.
1). The size of this flat facet can be sensitively con-
trolled through the electrochemical growth condi-
tions. Hence a more accurate model incorporating re-
alistic mirror profiles is required.

We compute the cavity modes using the property
that they are the eigenmodes of the cavity propagator
Pc. The corresponding eigenvalues give the loss
and phase shift per round trip. Formally the cavity
propagator is written as the decomposition
Pc=Pf �M�r� �Pf, where Pf is the free space propaga-
tion between the flat and the curved mirror, M�r� is a
multiplicative operator that represents the effect of
the curved mirror on the field profile, and the symbol
� indicates the concatenation of these operators [17].
We use this equation to represent Pc as a square ma-
trix on a set of GL functions: this makes it straight-
forward to find its eigenvalues and eigenvectors.

To compare theory and experiment, we extract the
“transverse micromode splitting” of the azimuthal
modes q and q+1, ��̃q

T= �̃q+1− �̃q. Experimentally
this splitting increases almost linearly with index q
[Fig. 3(a)], reflecting the increasing mode radius,
which thus sees more nonparabolic parts of the mir-

ror. We find this behavior is highly sensitive to the
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size of the flat vertex due to induced coupling with
higher-order modes. Deviations of theory from the ex-
periment can be explained by the uncertainty of the
precise geometric shape and roughness. Note that
the parabolic paraxial approximation gives ��̃T=0.6,
much larger than seen experimentally, implying an
effective cavity radius of curvature over ten times
larger than the physical R.

We also extract the “degenerate lifting,” 	
q
= �̃p+1,q−2− �̃p,q, which should be zero but is split by
the nonparabolicity and the micrometer scale of the
cavity. We find for both the model and experiment
that 	
 increases with increasing azimuthal mode in-
dex [Fig. 3(b)], because the mode experiences more of
the nonparabolic edges of the mirror. More puzzling
is the order of the modes: �p ,q�= �1,0� modes have
higher energy than (0,2) modes despite their closer
proximity to the mirror center. However the model
reproduces this modes’ order, arising from the flat
facet at the bottom of the spherical micromirror. In
addition the model shows that in �-scale cavities the
degeneracy between modes is lifted because the mir-
ror, while circularly symmetric, is not parabolic. In
large-scale cavities the reverse is true. Hence here
circularly symmetric modes are seen rather than the
TEmn splitting.

While a parabolic cavity has equally spaced trans-
verse micromode splitting and no degenerate lifting,
we find that the flat bottom can potentially account
for the spectral perturbations. We also show the re-
sults from a model including just the apertured flat
mirror (without curved dish sides), which is known
as an unstable resonator on macrosize scales [11]. Its
mode spectrum has not been reported so far in the
microdomain investigated here. The simple aperture
model predicts reduced finesse from incomplete con-

Fig. 3. (Color online) Experimental (red circles) and theo-
retical: dish model (blue crosses), aperture model (black tri-
angles). (a) Transverse micromode splitting, ��̃q

T; (b) de-
generacy lifting, 	
q; (c) finesse. L=9.7 �m, R=10 �m, p
=0, and experimental flat radius a=2.5 �m, with model a
as indicated.
finement of the transverse mode on the mirror that is
not well supported by the data [Fig. 3(c)]. Hence we
find that a spherical mirror with flat facet is needed
to model these microcavities, though clear differences
still exist possibly due to deviations from the spheri-
cal profile.

To conclude we measured and modeled the inten-
sity profiles and frequencies of microcavity trans-
verse modes, in the first deviations from the simple
paraxial parabolic approximation. Astigmatism has
less effect than in cavities of macroscopic scales, giv-
ing axially symmetric Gauss–Laguerre modes. Non-
parabolicity introduces new effects including induced
and unexpected frequency splittings. Understanding
the mode structure of microcavities is crucial for ex-
ploiting them in applications, as mode mixing drasti-
cally changes the mode structure. Such a tie-up be-
tween experiments on realizable microcavities and
theory presented here can aid in developing and un-
derstanding microcavities at the wavelength-scale
limit.
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