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Abstract: The interaction between individual plasmonic nanoparticles plays 
a crucial role in tuning and shaping the surface plasmon resonances of a 
composite structure. Here, we demonstrate that the detailed character of the 
coupling between plasmonic structures can be captured by a modified 
“circuit” model. This approach is generally applicable and, as an example 
here, is applied to a dolmen-like nanostructure consisting of a vertically 
placed gold monomer slab and two horizontally placed dimer slabs. By 
utilizing the full-wave eigenmode expansion method (EEM), we extract the 
eigenmodes and eigenvalues for these constituting elements and reduce 
their electromagnetic interaction to the structures’ mode interactions. Using 
the reaction concept, we further summarize the mode interactions within a 
“coupling” matrix. When the driving voltage source imposed by the 
incident light is identified, an equivalent circuit model can be constructed. 
Within this model, hybridization of the plasmonic modes in the constituting 
nanostructure elements is discussed. The proposed circuit model allows the 
reuse of powerful circuit analysis techniques in the context of plasmonic 
structures. As an example, we derive an equivalent of Thévenin’s theorem 
in circuit theory for nanostructures. Applying the equivalent Thévenin’s 
theorem, the well-known Fano resonance is easily explained. 

©2013 Optical Society of America 
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1. Introduction 

Localized surface plasmon resonances (LSPR) in nanoparticles have found many applications 
spanning from the realm of life sciences, including biomedicine, bio-sensing, cancer treatment 
[1–4], to the conventional research domain of electrical engineering, such as the design of 
nanocircuits, nanofilters and nanoantennas [5–8]. Modern nanofabrication techniques have 
allowed plasmonic properties to be a explored in a variety of topologies, such as rods [9,10], 
stars [11,12], split-rings [13], and rings [14,15], to name a few. With the nanoparticles closely 
spaced, the surface plasmons, i.e. the collective oscillations of conduction electrons, start to 
interact and, as a result, many exotic line features can be observed in the spectrum of the 
composite nanostructure, such as the splitting of the resonant frequencies [16] and spectral 
transparency known as plasmon induced transparency [17]. In order to predict the effects of 
mutual coupling between nanoparticles, several methods have been proposed on the ground of 
modal analysis (or Eigenmode Analysis). For example, by assuming the size of constituent 
nanoparticles much smaller than the wavelengths of the incident light, a dipole-interaction 
model is conceived and applied to the spectral splitting of nanoparticle pairs [18]. In the same 
spirit, the coupling between small nanoparticles is integrated into an optical lumped 
nanocircuit theory [19]. By considering the influence of higher order resonances, the coupling 
between surface plasmon modes is modeled by hybridization theory, similar to molecular 
hybridization theory where the atomic orbitals mix and form new molecular orbitals. Further, 
based on the nanoparticles’ electrostatic resonances [20], a methodology of systematically 
designing and analyzing the optical properties of an ensemble of nanoparticles is presented in 
[21,22]. However, all these models are constructed within the quasi-static limit. It is known 
that for nanoparticles with larger dimensions, the retardation effects, i.e. the phase changes of 
the excitation field over the nanoparticle volume, cannot be neglected and a rigorous 
electrodynamic model is required. With the electromagnetic response of a particle expressed 
by a set of eigenmodes of scattering fields and internal fields, such size effects can be 
captured by the Mie theory for spheres [23] and the geometrical Mie theory for arbitrary 
particles without sharp edges [24,25]. 

In this work, in contrast to pursue the field eigenmodes which span the whole space, we 
especially focus on the current eigenmodes supported by arbitrary nanoparticles. We perform 
a full-wave Eigenmode Expansion Method [26] implemented in the framework of a 
Volumetric Method of Moments (V-MoM) Solution [27–30]. Utilizing a dolmen-like 
nanostructure (dimensions, materials and depth profile are shown in Fig. 1), we illustrate that 
in contrast to the electrostatic modal analysis [20] where the material contribution is the only 
factor affecting the resonances, in a full-wave eigenmode analysis the radiation, as the result 
of retardation effects, comes into the picture and plays a crucial role in determining the 
resonances of surface plasmon modes. Further, we extract the eigenmodes and eigenvalues of 
the dolmen’s constituent structures: a monomer (single vertical gold slab with dimensions 
W1, L1 as shown in Fig. 1) and dimer (two parallel, horizontally aligned gold slabs with 
dimensions W2, L2 as shown in Fig. 1), and reduce the electromagnetic interaction between 
the monomer and the dimer to their eigenmodes’ interaction. By making use of the reaction 
concept [31], the eigenmodes’ interaction is simplified to an equivalent circuit model, based 
on which the hybridization of surface plasmon modes is discussed. Last but not least, the 
proposed circuit model enables the reuse of powerful circuit analysis techniques in the context 
of plasmonic applications. As an example, we develop an equivalent of Thevenin’s theorem 
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[32] for composite nanostructures and use it to explain the well-known Fano interference  
[33–39] in the dolmen structure. 

 

Fig. 1. Dolmen structure. The topology, the depth profile and SEM image of a gold dolmen 
nanostructure (L1 = 160 nm, W1 = 110 nm, L2 = 135 nm, W2 = 100 nm, S = 55 nm, G = 20 
nm, H = 50 nm). The white bar in the SEM image represents 100 nm. 

2. The eigenvalue problem for a nanoscatterer 

In this section, the eigenvalue problem is formulated for a general electromagnetic scattering 
problem and specifically illustrated for monomer, dimer and dolmen structures. The 
eigenvalues and eigenmodes of the dolmen structure are numerically extracted and their 
relation to the plasmonic response is discussed. Throughout the rest of this work, the time 
dependency i te ω− is considered. The angular frequency of the oscillation is denoted by ω . 
Note that the substrate effect is always considered in the analysis. 

Consider the interaction of electromagnetic waves with the dolmen nanostructure sitting 
on top of a glass substrate. At all space points, the total electric field ( ),ωtotE r is the sum of 

the scattered ( ),ωscatE r and the incident ( ),ωincE r  electric fields, 

 ( ) ( ) ( ), s, , , .entire paceω ω ω= + ∈tot inc scatE r E r rr E    (1) 

In Eq. (1), the incident field ( ),ωincE r  is the unperturbed field, i.e. the sum of the incoming 

plane wave and the reflected plane wave without the presence of nanostructures. 
Specifically, in the monomer volume (VM), the total field ( ),ωtotE r , due to the volume 

equivalence principle, is related with the total electric current ( ),ωMJ r  (including both 

conduction and displacement current), 

 ( ) ( )
( )( )0

,
,

, .
, MV

i

ω
ω ε ω ε

ω = ∈
− −

M
tot

J r
E r r

r
  (2) 

The scattered field ( )scatE r in the monomer includes both the scattered field generated by the 

monomer and by the dimer, 
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i dv
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ωμ ω ω− ∈

= − ⋅

⋅
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

MM M

MD D

scat G r r' J r'

G

E

r J r' r

r

r'                     
 (3) 

In Eqs. (2) and (3), 0ε and 0μ are the vacuum permittivity and the vacuum permeability, 

whereas ( ),ε ωr  describes the dielectric function of the material occupying the space volume 

of the monomer VM. The tensor Green’s functions ( ), ;ωMMG r r' and ( ), ;ωMDG r r' take the 

substrate effects into account and describe the self-coupling of the monomer and the mutual-
coupling between the dimer and the monomer. The integration in the first term on the right 
hand side of Eq. (3) is carried out over the monomer nanoparticle (VM), while in the second 
term this integration is over the volume of the dimer nanoparticle (VD) excluding the air gap in 
between. 

Similar relations for the dimer are given by 

 ( ) ( )
( )( )0

,
,

, ,
, DV

i

ω
ω ε ω ε

ω = ∈
− −

D
tot

J r
E r r

r
  (4) 
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r J r' r

r

r'                      
 (5) 

Substituting Eqs. (2) and (3) and Eqs. (4) and (5) into Eq. (1), we can construct a system 
of equations, 

 ( )( ) ( )( ) ( )', ', , , ,MM MD MC C Vω ωω+ = ∈M D incr Er r rJ J   (6) 

 ( )( ) ( )( ) ( )', ', , , .DM DD DC C Vω ωω+ = ∈M D incr Er r rJ J   (7) 

The functional relations MMC , DDC , MDC and DMC are defined as, 

 ( )( ) ( )
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DDD D
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 (9) 

 ( )( ) ( ) ( )0', , , , ', ,
DV

M MDC i dv Vω ωμ ω ω⋅= ∈ MDD DJ r G r r' J r' r  (10) 

 ( )( ) ( ) ( )0', , , , ', .
MV

D DMC i dv Vω ωμ ω ω⋅= ∈ DMM MJ r G r r' J r' r  (11) 

For the functional relations MMC and DDC , the associated eigenvalue problems can be found, 

 ( ) ( ) ( ), , , ,M M M
MM n MC Vω λ ω ω ∈n nJ = rr J r   (12) 

 ( ) ( ) ( ), , , .D D D
DD n DC Vω λ ω ω ∈n nJ = rr J r   (13) 

The subscripts of ( ),M ωnJ r and ( )M
nλ ω in Eq. (12) ( ( ),D ωnJ r and ( )D

nλ ω in Eq. (13)) 

denote the order of an eigenmode and its corresponding eigenvalue, while their superscripts 
represent which structure, e.g. the monomer or the dimer, the eigenmode and eigenvalue 
belong to. Due to the reciprocity of the Green’s function, both MMC and DDC are complex 
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symmetric (non-Hermitian) operators. Their eigenfunctions ( ),M ωnJ r and ( ),D ωnJ r are 

complex and form a complex orthonormal set, 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

'

'

1
, , , , , ' ,
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, , , , , ' .
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ω ω ω ω

ω ω ω ω
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m n m n
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J r J r J r J r

  

  

  

  

 (14) 

Moreover, when the volumes of the monomer (VM) and dimer nanoparticles (VD), i.e. the 
dolmen structure (V), are considered as a whole, Eqs. (6) and (7) can be summarized in a 
single equation, 

 ( )( ) ( ), , .C ω ω= incJ r E r  (15) 

The functional relation in Eq. (15) is defined over the volume of dolmen V, 

 ( )( ) ( )
( )( ) ( ) ( )0

0

,
, , .

,
, , ',

V

i dv
i

C Vωμ ω
ω ε ω ε

ω
ω ω= ∈+ ⋅

− − G
J r

J r J r r
r

r r'    (16) 

Similar to Eqs. (12) and (13), the associated eigenvalue problem can be defined and the 
eigenmodes form a complex orthogonal set, 

 

( ) ( ) ( )

( ) ( ) ( ) ( )
'

, , ,

1
, , , , , ' .

,

0

n

V

C

m n
dv

m n

Vω λ ω ω

ω ω ω ω
=

= ⋅ = 

∈

≠


n n

m n m n

J r = J r

J r J r J r J r

r  

  

  

 (17) 

As in [26], we assume that the eigenmodes ( ),ωnJ r  in Eq. (17) form the basis for the 

Hilbert space. Thus, the solution to Eq. (15) can be represented by the linear combination of 
eigenmodes, 
 ( ) ( ) ( ), , .n

n

c ωω ω= nJ r J r  (18) 

Since the operators defined in Eqs. (8) and (9) are not Hermitian but complex symmetric 
operators, the spectral theorem [40] does not apply. That is, there is no guarantee that 
solutions to the eigenvalue problems in Eqs. (12) and (13) always exist. Moreover, even in the 
case that Eqs. (12) and (13) do exist, in general, the root system [40,41] forms the basis, i.e. 
the complete set which spans the domain of the integral operator in Eqs. (6) and (7), rather 
than the complex orthonormal set in Eq. (14). Therefore, within the framework of operator 
theory there could be a problem with mathematical rigorousness. 

However, in practice the integral operators with infinite dimensions in Eqs. (8) and (9) are 
always reduced to finite dimensions by, e.g., the Method of Moments algorithm [42], whereby 
an N x N matrix is obtained. Under such circumstances, if this matrix is diagonalizable and 
has distinct eigenvalues, an associated linearly independent set spanning the vector space can 
be found. Specifics on the mathematical background of this method can be found in [40] and 
[41]. By using the complex orthonormal relation in Eq. (17), the coupling coefficient ( )nc ω  

in (18) can be derived, 

 ( ) ( ) ( )
( )

,
.

,
=

,
n

n

c
ω

ω
ω

ω
λ

n incJ r E r  
 (19) 

In order to illustrate how the eigenmodes and eigenvalues determine the response of the 
dolmen structure, we extract its first five eigenmodes (indicated with Ln), the corresponding 
eigenvalues, and their coupling to polarized incident light (See Fig. 2). In contrast to the L2 
and L4 modes, the charges of the L1, L3 and L5 modes are mainly separated in the  
Y direction (see surface charge density distributions in inset Figs. 2(a) and 2(e)). Thus, the L1, 
L3 and L5 modes are better coupled with Y polarized light (See Figs. 2(c) and 2(g)). As found 
in [43], an eigenvalues’ imaginary part is related with the difference between the power stored 
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in electric field and magnetic field generated by the corresponding eigenmode. Similar to an 
RLC circuit, the resonance of an eigenmode is reached whenever the electrically stored power 
balances the magnetically stored one. Thus, at the wavelength where the imaginary part of 
their eigenvalue crosses zero, the coupling of the L1, L3, and L5 modes to Y polarized light 
tends to approach a maximum (See the grey dashed vertical lines in Figs. 2(b) and 2(c)). The 
resonances of the L1, L3 and L5 modes are determined by further considering the effects of 
the eigenvalues’ real part (as denoted by the arrows in Fig. 2(c)): the larger the eigenvalues’ 
real part is, the more the resonance shifts from the wavelength where the imaginary part of the 
eigenvalue crosses zero. Note that this real part is related to the power lost via material 
dissipation and radiation by the eigenmodes’ scattered fields [43]. Since the plasmonic 
material constituting the dolmen is always the same (gold), the difference in the eigenvalues’ 
real part is attributed to the radiative loss. Consequently, from comparing the real part of the 
eigenvalues of L2 and L4 for example, we can conclude that the L2 mode is more radiative 
than the L4 mode. The same can be concluded for L1, L3 and L5, where now L5 is the most 
radiative one, L1 is less radiative, and L3 is the least radiative. This can also be observed from 
the experimental extinction spectra (Figs. 2(d) and 2(h)). Since L3 and L4 are less radiative, 
i.e. their net dipolar moments are relatively small, they are weakly coupled with the incident 
field. As a result, their plasmonic responses are overshadowed by the response of the brighter 
modes. 

 
Fig. 2. Eigenmodes, eigenvalues and plasmonic response of the composite dolmen structure. 
The first five eigenmodes are extracted for the dolmen structure and their charge density 
distribution is shown in the insets of (a) for the L1, L3, and L5 modes and (e) for the L2 and L4 
modes (blue and red indicate negative and positive charge, resp.). The real (solid) and the 
imaginary (dash) parts of their eigenvalues are presented in (a,e) and (b,f), resp. The coupling 
coefficients are shown in (c) and (g). The measured extinction cross sections of the dolmen 
structure are shown in (d) and (h) for Y and X polarized incident light, resp. 
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3. The hybridization between monomer and dimer eigenmodes: a “circuit” model 

To illustrate the interaction between the monomer and the dimer, a simple case is considered, 
where the current ( ),ωJ r  induced by the Y polarized incident light is taken as a linear 

combination of the monomer’s dipolar mode (See the inset in the rightmost column of  
Fig. 3(a)) and the dimer’s quadrupolar mode which consists of two out-of-phase oscillating 
dipoles (See the inset in the leftmost column of Fig. 3(a)), 

 ( ) ( ) ( ) ( ) ( )1 1, , ., M M D Djj ω ω ω ωω += 1 1J r rr JJ  (20) 

In Eq. (20), ( )1
Mj ω  and ( )1

Dj ω denote the contributions from the monomer’s dipolar mode 

( ),M ω1J r and the dimer’s quadrupolar mode ( ),D ω1J r  to the induced current ( ),ωJ r flowing 

in the dolmen structure. Substituting Eq. (20) into Eqs. (6) and (7), we can find that 

 ( ) ( )( ) ( ) ( )( ) ( )1 1', ', , , ,M M D
M

D
M MD Mj jC C Vω ω ω ωω+ = ∈1 inc1J r J rr E r   (21) 

 ( ) ( )( ) ( ) ( )( ) ( )1 1', ', , , .M M D
M

D
D DD Dj jC C Vω ω ω ωω+ = ∈1 inc1J r J rr E r   (22) 

Left-multiplying Eq. (21) (Eq. (22)) by ( )',M ω1J r  ( ( )',D ω1J r ) and integrating over the 

monomer’s (dimer’s) volume, we have 

 
( ) ( )
( ) ( )

( )
( )

( )
( )

1 1

1 1

.
MM MD

DM DD

M M

D D

j e

j

c

c c e

c ω ω
ω

ω ω
ω ωω

    
=    

    
 (23) 

Since the impedance matrix of a T-Network [32] is a 2 by 2 matrix such as the matrix on the 
left hand side of Eq. (23), we can conceive an equivalent circuit model (See Fig. 3(c)) for the 
interaction between the monomer’s dipolar mode and the dimer’s quadrupolar mode. The 
electromagnetic effects (e.g. self-coupling, mutual coupling, etc.) of the monomer’s and 
dimer’s fundamental modes are summarized within two coupled circuit loops, i.e. the 
“monomer” loop and the “dimer” loop. 

The self-coupling of an eigenmode, i.e. the reaction [31] of a current eigenmode to the 
electric fields generated by itself, is described by ( )MMc ω for the “monomer” loop and by 

( )DDc ω  for the “dimer” loop (See the left and right graphs in Fig. 3(a)). Noticing the 

eigenvalue problems defined in Eqs. (12) and (13) and the orthogonality of eigenmodes in  
Eq. (14), we can find that ( )MMc ω and ( )DDc ω are actually the eigenvalues of the monomer’s 

dipolar mode and the dimer’s quadrupolar mode, 

 ( ) ( ) ( )( ) ( )1', ', ,
M

MM
M

M M M
M

V

c C dvω ω λ ωω = ⋅ = 1 1J r J r  (24) 

 ( ) ( ) ( )( ) ( )1', ', .
D

DD
D

D D D
D

V

c C dvω ω λ ωω = ⋅ = 1 1J r J r  (25) 

Similarly, ( )MDc ω and ( )DMc ω describe the mutual coupling, i.e. the reaction [31] of a 

current eigenmode to the electric fields generated by another current eigenmode, between the 
monomer’s and the dimer’s fundamental modes (See Fig. 3(b)), 

 ( ) ( ) ( )( )', ', ,
D

MD
M

M D
D

V

c C dvω ω ω= ⋅ 1 1J r J r  (26) 

 ( ) ( ) ( )( )', ', .
D

DM
D

D M
M

V

c C dvω ω ω= ⋅ 1 1J r J r  (27) 

Due to the reciprocity of Maxwell’s equations, ( )MDc ω is equal to ( )DMc ω . It is worth 

noticing that in order to numerically evaluate the functional relations in Eqs. (8)–(11) and in 
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Eq. (16), we can discretize the monomer (VM) and the dimer (VD) by hexahedral blocks and 
associate two adjacent blocks with a presumed local current distribution f(r) of unit 
amplitude, called basis function. By further applying a testing procedure, we can recast, for 
example, Eqs. (10) and (11) into a matrix form [29], 

 ( ) ( ) ( ) ( )0

'

, , ' , ' , ,m n
D MM

V
n

V

D m
i dC v dv V Vωμ ω

 
⋅ ∈ ∈ 

 
=   MDM Dg r G r r' f r' r r  (28) 

 ( ) ( ) ( ) ( )0

'

, , ' , ' , .m n
M DD

V
n

V

M m
i dC v dv V Vωμ ω

 
⋅ ∈ ∈ 

 
=   DMD Mg r G r r' f r' r r  (29) 

In Eqs. (28) and (29), g(r) is called testing function. The subscripts denote which 
nanostructure (monomer or dimer) the basis and testing functions belong to, while the 
superscripts emphasize the order of the basis and testing function. When the testing functions 
are identical with the basis functions, the testing procedure is called “Galerkin” testing [42]. 
Though Galerkin testing is accurate and preserves the reciprocal symmetry of Maxwell’s 
equations, it requires eight-fold integrals (a six-fold integral can be seen in Eqs. (28) and (29) 
and the extra two-fold comes from the evaluation of the Green’s function). To ease the 
computational efforts, instead we pursue the Galerkin testing procedure in the z direction and 
a well-known simpler razor-blade testing procedure (which saves a two-fold integration) in 
the horizontal plane [29]. As a consequence, the testing functions are different from the basis 
functions and therefore the symmetry of the resultant matrices is weakly disturbed, finally 
leading to the noticeable discrepancy in Fig. 3(b) between the imaginary parts of 

( )MDc ω and ( )DMc ω . 

Since the matrix on the left hand side of (23) describes the coupling between eigenmodes, 
we call this matrix hereafter the “coupling matrix”. Extra attention ought to be paid to the fact 
that although the quantities defined in Eqs. (24)–(27) have the units of Ohms, they do not 
conform to the conventional definition of impedance in circuit theory, since Eqs. (24)–(27) 
are obtained by applying the definition of reaction [31] rather than power [44]. 

On the right hand of Eq. (23), the coupling between the Y polarized incident field and the 
current eigenmodes is modeled as the “voltage” sources driving the loops, 

 ( ) ( ) ( )1 ,', ,
M

M M

V

de vω ω ω⋅=  inc1 E rJ r  (30) 

 ( ) ( ) ( )1 ,', .
D

D D

V

de vω ω ω⋅=  inc1 E rJ r  (31) 

Note that since the net dipolar moment of the quadrupole mode is zero, it is decoupled from 
the normally incident Y polarized light and the equivalent source driving the “dimer” loop is 
shorted-circuited, i.e. ( )1 0De ω = . Knowing the coupling matrix and excitation in Eq. (23), we 

can calculate the “currents” ( )1
Mj ω  and ( )1

Dj ω circulating in the loops (See Fig. 3(d)). 

In parallel with Eq. (17), the eigenvalue problem for Eq. (23) is 

 
( ) ( )
( ) ( )

( )
( ) ( ) ( )

( )
1 1

1 1

.
M M

D

MM

M D

MD

D DD

c j

j j

c j

c c

ω ω
ω

ω ω
λ ω

ω ωω
     

=     
     

 (32) 

By solving Eq. (32), the eigenvectors and eigenvalues of the whole structure can be obtained. 
Remembering Eq. (20), the components of each eigenvector, i.e. ( )1

Mj ω  and ( )1
Dj ω , are the 

weights of the contributions from the eigenmodes of the constituent monomer and dimer 
structures to the eigenmode of the whole dolmen structure. Here, the monomer’s dipolar mode 
and the dimer’s quadrupolar mode hybridize into the bonding and anti-bonding modes. In the 
circuit model, the bonding mode indicates the currents in the monomer’s loop and the dimer’s 
loop flowing against each other; the anti-bonding mode is equivalent to the currents in the 
monomer’s loop and the dimer’s loop flowing along with each other. 
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The eigenvalues of the hybridized modes can be found as (See the middle graph in  
Fig. 3(a)), 

 ( )
( ) ( )( ) ( ) ( )( ) ( ) ( )1 1

2

1 1 4
.

2

M D M MD DMD c cλ ω λ ω λ ω λ ω ω ω
λ ω

+ ± − +
=  (33) 

By comparing the eigenvalues derived from Eq. (33) (see red and green curves in the middle 
column of Fig. 3(a)) with the eigenvalues directly retrieved from Eq. (17) (see red and green 
curves in Figs. 2(a) and 2(b) and the light grey curves in the middle column of Fig. 3(a)), we 
can summarize that Eq. (33) provides a good estimation for the eigenvalues of the L1 and L3 
dolmen modes. Furthermore, the resonant wavelengths of the hybridized modes are found at 
the wavelengths where the imaginary part of their eigenvalues crosses zero, around 850 nm 
for the bonding mode and around 700 nm for the anti-bonding mode. It can be seen from  
Fig. 3(d) that at these wavelengths the whole equivalent circuit is at resonance. 

 
Fig. 3. The equivalent circuit model of the dolmen structure excited by Y-polarized incident 
light. (a) shows the real (solid) and imaginary (dashed) parts of the self-coupling of the 
monomer’s dipolar mode (cyan, left column), the dolmen’s L1 and L3 modes (red and green, 
resp., middle column), and the dimer’s quadrupolar mode (pink, right column). The 
eigenvalues of the L1 and L3 modes directly extracted as in Eq. (17) (the red and green lines in 
Figs. 2(a) and 2(b)) are shown as grey lines in (a). The charge density distributions of the 
dimer’s quadrupolar mode, the monomer’s dipolar mode, and their hybridized modes are 
shown in the insets of (a). (b) shows the real (solid) and imaginary (dashed) parts of the mutual 
coupling. Knowing the self-coupling and mutual coupling, as well as the driving voltage 
source, an equivalent circuit for the dolmen structure can be constructed as shown in (c). The 
Thévenin’s equivalent of the equivalent circuit is also presented in (c). As a result, the current 
circulating in each loop can be found as in (d). The reference directions of the currents are 
shown in (c). 
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4. Fano resonance in the dolmen structure: a Thévenin’s theorem viewpoint 

Extra attention needs to be paid to the spectral dip indicated in Fig. 3(d) where the current in 
the “monomer loop” reaches a minimum. In contrast, the current in the “dimer” loop 
approaches a maximum. This observation has been attributed to destructive Fano interference 
of a spectrally overlapping and coupled broad superradiant surface plasmon resonance, i.e. the 
monomer’s dipolar mode, with a narrow subradiant mode, i.e. the dimer’s quadrupolar mode 
[33] and theoretically treated by the Fano model [34] and generalized Fano model [35–39]. 
Here, from the perspective of Thévenin’s theorem [32], we identify the effects of circuit 
parameters in Eq. (23) on the formation of a Fano resonance. Since the calculation of circuit 
parameters can be easily integrated into existing Volumetric Method of Moments [27–30] 
algorithms, such a thorough understanding may open the possibility of utilizing the proposed 
circuit model in numerically optimizing the asymmetric line shape and facilitating the design 
of Fano resonance based plasmonic sensing applications [4]. 

To start, we reformulate the circuit equation describing the “monomer” loop, i.e. the first 
row of Eq. (23) as, 

 ( ) ( ) ( ) ( ) ( )1 1 1 .M MM M DM Dc cj e jω ωω ω ω= −  (34) 

From the equivalent circuit model, we can identify two independent sources on the right-hand 
side of Eq. (34): 1) the voltage source ( )1

Me ω imposed by the incident field in the “monomer” 

loop; 2) the voltage ( ) ( )1
DMDc jω ω−  induced by the current circulating in the “dimer” 

loop ( )1
Dj ω via the mutual coupling ( )MDc ω . Due to the linearity of Maxwell’s equations, 

these two sources can be treated separately. 
Firstly, we consider the case in which the dimer is not present and the monomer’s dipolar 

mode is excited by the Y polarized incident wave (See Fig. 4(a1)). This situation is equivalent 
to open circuit the “dimer” loop (See Fig. 4(a2)). That is to say, the current in the dimer loop 
is zero, 

 ( )(1)
1 0,Dj ω =  (35) 

while due to the imposed source the current in the monomer loop is 

 ( ) ( )
( )

1(1)
1 .

M
M

MM

e
j

c

ω
ω

ω
=  (36) 

Further, ( )(1)
1
Mj ω  introduces a voltage ( )D

oce ω across the ends of disconnected “dimer” loop, 

 ( ) ( ) ( )(1)
1 .D DM M

oce jc ωω ω= −  (37) 

According to the conventions in circuit theory, this voltage ( )D
oce ω is called the “open-circuit” 

voltage and the ends where the “dimer” loop is cut form a “port”, further named the “dimer 
port”. 

Secondly, we remove the incident wave and feed the dimer’s quadrupolar mode ( ),D ω1J r  

with an amplitude ( )1
Dj ω (See Fig. 4(b1)) to excite the monomer’s dipolar mode ( ),M ω1J r . 

In the circuit model, this is equivalent to adding a current source at the dimer port (See  
Fig. 4(b2)). As a result, the current circulating in the “dimer” loop is, 

 ( ) ( )(2)
1 1 .D Dj jω ω=  (38) 

Due to the electromotive force created by ( )(2)
1
Dj ω , a current ( )(2)

1
Mj ω  is induced in the 

“monomer” loop, 
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 ( ) ( )
( ) ( )(2) (2)

1 1 .
M

D
D

M
MM

c

c
j j

ω
ω

ω ω= −  (39) 

The input impedance to the dimer port ( )Dc ω can be derived by calculating the ratio of the 

voltage across the dimer port to the imposed current ( )1
Dj ω , 

 ( ) ( ) ( ) ( )
( ) .

MD
D DD DM

MM

c
c c c

c

ω
ω ω ω

ω
 

= + −  
 

 (40) 

The “monomer” loop’s current ( )1
Mj ω  (See Fig. 3(d)), is the sum of the currents 

introduced by two independent sources, 

 ( ) ( ) ( )(1) (2)
1 1 1 .M M Mj j jω ω ω= +  (41) 

It can be seen from Figs. 4(a3) and 4(b3) that around 800 nm then ( )(2)
1
Mj ω counter-flows 

with respect to the current ( )(1)
1
Mj ω . That is to say, in the equivalent circuit (Fig. 3(c)) the 

source voltage imposed by the source field ( )1
Me ω is balanced by the electromotive force 

( ) ( )1
DMDc jω ω− due to the mutual coupling from the “dimer” loop. As a result, the voltage 

drop across the “monomer” loop is approximately zero, the net current minimizes, 
correspondingly yielding a Fano dip in Fig. 3(d). 

By substituting Eq. (41) into the second row of Eq. (23), we can recover the Thévenin 
equivalent of the circuit, 

 ( ) ( ) ( )1 .DD D
oc ce jωω ω=  (42) 

As shown in Fig. 3(c), the Thévenin theorem “seals” the electrical circuit left to the dimer port 
into a “black box” which contains an open circuit voltage ( )D

oce ω  in series with an equivalent 

impedance ( )Dc ω . Physically, Thévenin’s theorem selects the dimer’s quadrupolar mode as a 

“port” interfacing the system, which is composed of the dolmen structure and the incident 
wave, to the “outside” world. The tuning of the dimer’s quadupolar mode by, for example, 
loading the dimer with a different plasmonic material which is equivalent to add an inductive 
load at the dimer port in the circuit model, can be conducted without considering the detailed 
electromagnetic properties inside the “port”. 

The current flowing in the “dimer” loop ( )1
Dj ω is thus the ratio of the open circuit voltage 

( )D
oce ω  to the input impedance to the “dimer” port ( )Dc ω , 

 ( ) ( )
( )1 .

D
oc
D

D

c

e
j

ω
ω

ω
=  (43) 

Combining Eqs. (36), (37), and (40) with Eq. (42), Eq. (42) can be simplified as, 

 ( ) ( )
( )

( ) ( )
( ) ( ) ( ) ( )

1
1 .

D MDM

D DD MM MD D
oc

M
D c

c c c

e e
j

c c

ω
ω ω ω
ω ω

ω
ω ω

= =
−

−
 (44) 

In the ideal case where the resonances of the monomer’s dipolar and the dimer’s quadrupolar 
mode are degenerate, the imaginary parts of ( )MMc ω and ( )DDc ω cross zero at the same 

wavelengths. As a result, the denominator of Eq. (43) reaches a minimum and accordingly the 
current in the dimer loop becomes maximum (See Fig. 3(d) and the pink curves in Fig. 4(b3)). 
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Fig. 4. Illustration of Thévenin’s theorem for coupled nanostructures. In (a1), only the 
monomer is present and excited by an incoming plane wave. The polarization and propagation 
direction of the incident plane wave are denoted by the blue and red arrows, resp. In (a2), the 
equivalent circuit model of (a1) is plotted with the open-circuit voltage explicitly defined. (a3) 
shows the corresponding the real (solid) and imaginary (dashed) parts of the currents 

circulating in the monomer’s loop ( )(1)
1
Mj ω and the dimer’s loop ( )(1)

1
Dj ω . In (b1), the 

monomer structure is excited by the quadrupolar mode in the dimer structure with an amplitude 
of ( )1

Dj ω . The equivalent circuit of (b1) is illustrated in (b2). The real (solid) and imaginary 

(dashed) parts of the currents in the monomer’s loop ( )(2)
1
Mj ω  and the dimer’s loop 

( )(2)
1
Dj ω due to the excitation of the quadrupolar mode are plotted in (b3). As in Fig. 3, the 

monomer loop and its associated quantities are always denoted by the cyan color, while the 
dimer loop is specified by the pink color. 

5. Conclusion 

In summary, we propose an approach to characterize the interaction between plasmonic 
nanostructures by an equivalent circuit model. The eigenvalue problem for a composite 
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nanoscatterer is first illustrated with a dolmen structure. The effects of the eigenmodes and 
eigenvalues on the plasmonic response are discussed. By further examining the eigenmodes of 
the dolmen’s composite structures, the monomer and dimer, we boil down the interaction 
between plasmonic nanostructures to the interaction between their eigenmodes. As an 
example, the interaction of the monomer’s dipolar mode with the dimer’s quadrupolar mode 
is emphasized and summarized in a coupling matrix. Furthermore, an equivalent circuit model 
is conceived, based on which the plasmonic mode hybridization is elaborated. Last but not 
least, an equivalent of Thevenin’s theorem in circuit theory for plasmonic nanostructures is 
derived. From this perspective, the well-known Fano dip in the dolmen’s spectral response is 
explained. 

It is worth noticing that although the discussion is confined here to the context of two 
linearly coupled circuits, i.e. a 2 x 2 network, the proposed circuit model can be readily 
generalized to an N x N network to include the electromagnetic interactions between multiple 
nanostructures supporting multiple eigenmodes. In this way, the proposed model allows the 
reuse of many well-established circuit analysis techniques [32] and therefore promises a 
substantial simplification in future analyses and design of coupled nanoscale plasmonic 
systems. 
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