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Threading plasmonic nanoparticle strings with light
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Nanomaterials find increasing application in communications, renewable energies, electronics

and sensing. Because of its unsurpassed speed and highly tuneable interaction with matter,

using light to guide the self-assembly of nanomaterials can open up novel technological

frontiers. However, large-scale light-induced assembly remains challenging. Here we

demonstrate an efficient route to nano-assembly through plasmon-induced laser threading of

gold nanoparticle strings, producing conducting threads 12±2 nm wide. This precision is

achieved because the nanoparticles are first chemically assembled into chains with rigidly

controlled separations of 0.9 nm primed for re-sculpting. Laser-induced threading occurs on a

large scale in water, tracked via a new optical resonance in the near-infrared corresponding to

a hybrid chain/rod-like charge transfer plasmon. The nano-thread width depends on the chain

mode resonances, the nanoparticle size, the chain length and the peak laser power, enabling

nanometre-scale tuning of the optical and conducting properties of such nanomaterials.
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A
lthough optical nanomaterials could find numerous
potential applications1–6, controlling their fabrication at
the nanoscale has proved challenging, particularly for

scalable production, which precludes top-down fabrication.
Although bottom-up approaches can produce simple
nanoparticle (NP) geometries (such as particles or nanowires),
more complex nanostructures have been hard to access reliably,
emphasizing the need for a new technology. Current approaches
have focussed on chemically binding NPs together or fusing
individual nanocrystalline particles along common crystalline
axes (oriented attachment)7,8, both of which have been difficult to
control at the nanoscale and provide little control of contact
conductivities.

Just as light is used to characterize optical materials, light can
also be used to build them. Ultrafast lasers have so far been used
to shape continuous metal surfaces with a variety of micro- and
nanostructures such as needles, ripples, cavities, nanobumps and
nanojets9–15. Nanojets in particular are columns of liquid
material, frozen in the process of surging from the metal
surface in the direction opposite to the incoming laser pulse. They
are very similar to the back-jets observed on the surface of water
following the impact of a pebble and are especially interesting as
candidates for threading16. However, such nanojets have poor
width control and cannot be aligned to face each other. These
difficulties can be circumvented using surface plasmon
resonances—the coherent oscillation of surface electrons.
Plasmons enhance the optical fields and more importantly
localize them to sub-wavelength regions termed hotspots. In
dimers, or chains of plasmonic NPs, the plasmonic hotspots occur
directly within the gaps17. Ultrafast lasers can therefore shape
metals on the nanoscale to form a continuous thread in such
dimers or chains of NPs.

Using ultrafast lasers to re-shape NP aggregates has been
briefly explored18,19; however, only small numbers of welded NPs
have been examined, while the crucial requirement is for a highly
reproducible, high-yield fabrication process controlled in real
time and monitored non-destructively. Such ultrafast re-shaping
is very different from thermal laser-welding in nanowires20 or
photochemically welded NP dimers21,22. Here we explore three
essential questions. First, can we assemble nanomaterials by using
light to selectively join NPs together on a large scale, and monitor
the assembly in real time? Second, what are the important factors
for this nanoassembly? And third, can we precisely control the
dimensions of the connecting threads produced at the nanoscale?

Results
Assembling nanomaterials by using light. Starting from indi-
vidually separated NPs, we find intense femtosecond laser pulses
can fabricate thin threads to connect the NPs into continuous
materials, on a large scale. Key to our advance is the initial
chemical scaffolding of NPs into chains of plasmonic hotspots
using barrel-shaped cucurbit[7]uril (CB) molecules, which glue
together gold NPs with rigid 0.9 nm gaps23,24. Previously, we
illustrated the precision of this interparticle control by achieving
very reliable surface-enhanced Raman scattering (SERS) signals
from molecules hosted within the CBs23. Aggregation of gold NPs
with CB molecules produces large aggregates, whose structure is a
priori unknown. Nevertheless, we showed that the optical
behaviour of such large aggregates can be understood by
decomposing the optical response into smaller one-dimensional
chains embedded inside the aggregates24. These optical chain
models help to understand the three spectral signatures, which
allow us to monitor the threading in real time (summarized in
Fig. 1a). First, the single plasmon resonance of 50 nm diameter
gold NPs is situated at 532 nm. Second, coupling between the gold

NPs mediated by CBs produces capacitive chain plasmon (CCP)
resonances, at around 745 nm. Third, emerging at around
1,100 nm is the new threaded chain plasmon (TCP), which
corresponds to an entirely conductive chain, with charge transfer
allowed between neighbouring NPs. Processing by light induces
large-scale threading, probed here across ml volumes (as depicted
in Fig. 1b). Threads formed using unfocussed 805 nm, 200 fs,
ultrafast laser pulses of 90 MW cm� 2 intensity are directly seen
in transmission electron microscopy (TEM) images (Fig. 1c and
Supplementary Figs 1–3).

To clearly identify the emergence of new spectral features in
the suspension of gold NPs, we subtract the background single
plasmon response from the spectra to give the extinction change,
DExtinction (Fig. 1d). As single NPs are captured in the chains
being formed, a spectral dip is observed at 532 nm. The emerging
CCP resonance originates from chains embedded in larger
aggregates that are directly accessed by light polarized roughly
parallel to them. Although such chains are kinked, this hardly
affects the CCP, which depends instead on the number of NPs
in each chain and their size24. Initially when CBs are added to the
NP suspension in water, aggregation forms the CCP over
B5 min, completely reproducibly (Supplementary Fig. 4). This
reproducibility is due to the precise subnanometre gaps, which
control the field enhancements. As the latter are uniform along
the chain, threads are formed on near-resonant femtosecond laser
illumination, accompanied by the appearance of a new TCP
resonance at around 1,100 nm. The spectral dip seen at the
805 nm laser wavelength is due to the transformation of
aggregated chains into bridged conducting strings.

The emergence of the TCP in the near-infrared is clearly
confirmed by numerical simulations (Fig. 1e). Here, perfectly
spherical NPs of 50 nm diameter are assumed because, even
though our NPs’ surfaces are slightly rough25, the measured
optical response averages over a very large number of them.
Plotting the extinction spectra for such NPs in strings of six
(selected as their optical chain mode is then resonant at 805 nm,
see below) produces near-infrared modes strongly dependent on
the thread width. The observed 1,100 nm TCP peak (Fig. 1d)
is thus attributed to a distribution of threads with widths
around 12 nm. TEM (Fig. 1c) indeed confirms that bridging
threads are only seen after irradiation and can be as small as 5 nm
across. However, in such three-dimensional nanostructures,
electron microscopy is unable to function optimally
(Supplementary Figs 1–3). By comparison, spectroscopy is
simple and unobtrusive, and following the near-infrared charge
transfer TCP peak reveals the thread width across large-scale
assemblies and in real time. Next, we examine the important
factors for this laser-induced assembly.

Important factors for assembling nanomaterials with light. In
our experiments, threading is achieved with high peak power
(Ppeak) ultrafast laser pulses, which indicates that the process is
non-thermal. In a non-thermal process, the strong local electric
fields can move around atoms (through optical forces) or ionize
the lattice (weakening the bonds and increasing atomic mobility).
To distinguish the effects of Ppeak and average laser power (Pave),
we varied the repetition rate while keeping Pave constant at
500 mW (Supplementary Fig. 5). For both CW and 80 MHz
illumination, neither the spectral hole on the CCP nor any TCP
peak is observed; the effect on the optical chain mode spectrum is
negligible. These data prove that it is not thermal heating (pPave)
but field enhancements (pPpeak) that drive the bridging process.
In addition, although thermal mechanisms should produce
amorphous or single crystalline gold (depending on cooling rate),
all our TEM data (Supplementary Figs 2 and 3) show
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polycrystalline NPs, indistinguishable from the unthreaded ones,
with only little reconstruction to accommodate the thread. This
evidence also strongly supports the athermal mechanism. The
role of field enhancements is confirmed by the behaviour of the
plasmon resonance.

The crucial importance of the plasmon resonance is seen by
changing the NP size from 30 to 60 nm (Supplementary Fig. 6).
Increasing their diameter tunes the CCP towards the laser
wavelength. For 30 nm NPs, the chain plasmons have little
spectral overlap with the laser and neither spectral hole nor TCP
is seen. With increasing NP size, as the chain-mode field
enhancements at 800 nm increase, both the spectral hole and the
TCP peak become more pronounced, as discussed below.

The near-field distributions at the TCP show the laser-induced
mixing of optical chain and rod-like modes (Fig. 2). The full
extinction spectrum for thread widths from 10 to 14 nm (Fig. 2a)
reveals three modes. The most intense peak in the mid-infrared
(which is not possible to probe directly due to water absorption)
is associated with a rod-like plasmon mode. This is not surprising
because threading renders the entire chain conductive and
transforms it into a string akin to a metal rod. The peak in the
visible is associated with a modified optical chain plasmon mode,
which remains because the bridges are very thin in comparison
with the size of the NPs with field enhancements that are strong
in the crevices around the thread.

The third peak is in the near-infrared, and the field and phase
distributions (Fig. 2b) show that it is associated with a hybrid
chain/rod-like mode. This hybrid nature is clearly seen in the field
distributions for increasing thread thickness from 0 to 50 nm
(that is, from chain to rod, Supplementary Fig. 7). In this mode,

the electric field profiles exhibit both a rod-like envelope and local
field enhancements in the interstices around the thread. This
near-infrared hybrid chain/rod-like mode is situated in a very
convenient spectral region that allows us to demonstrate excellent
control of the nanothread width.

Precise control over the dimensions of the threads. As the TCP
depends on the width of the threads (Fig. 1e) and threading
depends both on Ppeak and on matching the CCP with the laser
wavelength, we can use these to control the thickness of the
thread. At lower powers, the only locations above the critical
threading threshold are at the chain hotspots. Adjusting the CCP
position is done by varying the NP diameter. From the emerging
TCP peak, we can fit to extract its wavelength, lp and full width at
half maximum (FWHM) linewidth, Dl (Supplementary Fig. 8).
For NP diameters of 40, 50 and 60 nm (Fig. 3a), we find nar-
rowest resonances at lower laser powers. To understand the
precision possible for control of the thread width, the length
distribution of laser-excited chains must be considered. On
aggregation with CB molecules, the gold NPs form aggregates
consisting of NP chains of varying length, extending in all
available directions23,24,26. For each NP diameter, different chain
lengths give different chain resonances, but as the chains become
longer, the redshift of plasmon peak position saturates (Fig. 3b).
For 30 nm NPs, chains are never resonant at 805 nm, which
explains why laser irradiation has no effect (Supplementary
Fig. 6). Upon resonant irradiation, the entire chains are
simultaneously threaded. This is evidenced by the fact that the
chain mode wavelength shifts dramatically as soon as the first
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conductive contact is made, losing resonance with the pump
laser. Thus, for 40 nm NPs, many chain lengths are resonant and
so the TCP peak is also broad with Dl/lp¼ 20%. For 50 and
60 nm NPs, there are few resonant lengths hence the TCP peaks
are narrower, Dl/lp¼ 9.3% and 8.6%, respectively.

Plotting simulated spectra for several thread widths (Fig. 3c),
we find the observed spectral positions and FWHM for the 50
and 60 nm NPs correspond to nanothread widths of 12±2 and
11±2 nm, respectively. This level of precise processing control is

unprecedented for such a large-scale experiment. In principle
though, the optical control can reach even subnanometre
dimensions, as we now demonstrate in the case of single dimers.

Directing our attention on the shortest possible chain, we use a
focused picosecond supercontinuum laser to controllably thread
single gold NP dimers (Fig. 4). The optical scattering spectra
(Supplementary Fig. 9) clearly show the submillisecond transition
from the capacitive dimer plasmon to the threaded dimer
plasmon (TDP). A dimer being the shortest possible chain, the
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latter is identical in this limit to the charge-transfer plasmon27.
Once the threaded dimer plasmon forms (Fig. 4b), the thread
width can be permanently adjusted through pulsed illumination
with a bandpass-filtered source. In the optically accessible region
below 1,000 nm, this enables us to fine-tune the bridge width with
a relative error o0.2 nm (Fig. 4c), thereby showing that it is
possible to create widely tuneable plasmonic materials with a
well-defined optical response.

Discussion
Although a variety of mechanisms are involved in optical
construction of threads between NPs, the fact that our results
depend on Ppeak and not on Pave allows us to identify two
significant contributions. Non-thermal melting (dependent on
Ppeak) occurs when the light–matter interaction lasts only for the
pulse duration, before electrons can transfer any heat to the
lattice. As a result, the excited electrons instantaneously weaken
the lattice, causing local material melting28. Observations of such
Si crystal melting report 150 fs timescales29. As our results depend
on the surface plasmon resonance, we believe the lattice
transiently weakens only at the surfaces situated directly across
the gap between NPs. Also dependent on Ppeak are the field
enhancements in the gap between the NPs, which mediate
plasmonically enhanced optical forces acting on mobile gold
surface atoms at the hotspot edges, drawing them into the
gap30,31. A second force on the atoms is produced by
plasmonically enhanced emission of hot electrons, which
induces local atomic charging that drives reconstruction of the
nanogaps. Melting has indeed been reported in metal NPs for
intensities of 1010 W cm� 2 with theory suggesting it to be non-
thermal18. Here, threads are obtained with thousand-fold smaller
laser intensities of 2� 107 W cm� 2, because we excite directly at
the plasmonic hotspots, which we first carefully construct to
profit from the near-field enhancement and thus strong local
forces for materials processing.

To summarize, starting from NP chains in solution with
precise gaps, we create large numbers of near-identical,
continuous strings joining NPs with a conducting metal thread.
The thickness of the thread depends on the laser wavelength, the
peak power, the chain mode plasmon, the NP size and the chain
length. Our results prove that very precise control of nanomater-
ials growth using light can be achieved at a large scale. Because of
the dramatically enhanced fields in the crevices around the
thread, excellent prospects exist for device application in
photovoltaics, sensing and surface-enhanced Raman scattering.

By further tailoring the light fields, entirely new structures can be
created. For instance, using light with azimuthal angular
momentum, split rings and chiral strings can be realized,
highlighting the strong potential for solution-processing-based
metamaterials.

Methods
Sample preparation. Gold NP suspensions with nominal diameters of 30, 40, 50
and 60 nm (verified by SEM) at respective molar particle concentrations of 330,
150, 75 and 40 pM were used as received (British Biocell International). Their
specified relative s.d. in size is below 8%. CB was synthesized according to the
method published by Day et al.32 Suspended gold NP aggregates: all glassware were
cleaned with aqua regia. A 1-mM CB stock solution was prepared (5.8 mg with 5 ml
of Millipore 18 MO H2O) and aggregation of NPs induced through injection of
appropriate calculated amounts (0.25–5 ml for 0.5–10 mM final CB concentration)
of this solution into 500ml of undiluted gold NP suspension inside a quartz cuvette.
Gold NP dimers on coverslip: a mixture of 500 nM CB and 40 pM gold NPs was
stirred for 20 s, then drop cast onto an indium-tin-oxide coated coverslip (SPI
Supplies, 06463-AB) and dried at 60 �C. Gold NP dimers were identified using a
Zeiss 1540XB Crossbeam SEM/FIB workstation and tagged with a nearby focused-
ion-beam mark to aid subsequent location under the optical microscope.

Extinction spectroscopy. The ultrafast pulses were generated from a Mira-
pumped RegA system (150 fs at 800 nm, Coherent). The collimated laser beam was
directed through an optical cuvette (Hellma QS 104) and onto a power meter
(Coherent, Lasermate-Q). Light from a halogen lamp (OceanOptics DH-2000) was
fibre-coupled (OceanOptics QP200-2-VIS-BX) through the cuvette perpendicularly
to the laser beam and the transmitted light collected by a bifurcated fibre (Ocea-
nOptics QBIF50-VIS-NIR) and sent to two spectrometers (Ocean Optics QE65000,
spectral range: 300–1,100 nm and NIRQuest512, 900–1,700 nm). The illuminated
volume was 0.5 ml. A magnetic stirrer (Fisher Scientific 11-520-16S) underneath
the cuvette holder (Thorlabs CBH100) ensured fast mixing after injection of CB.
A schematic of the setup is shown in Supplementary Fig. 10.

Power density values. For a pulsed laser source with an average power Pav and a
repetition rate n, the pulse energy is Epulse¼ Pave/n. The peak power is therefore
given by Ppeak¼Epulse/tpulse, where tpulse is the pulse duration. The peak power
density (radiant flux density) is thus Ppeak/A, with A the beam area. For the
experiments reported here, the repetition rate n¼ 250 kHz, the pulse duration
tpulse¼ 200 fs and the beam area AB0.18 cm2. The average power Pave was adjusted
with a half-wave plate and a linear polarizer to values between 0.1 and 1 W.

Single particle scattering spectroscopy. The output of a supercontinuum laser
(Fianium SC450-6, 450–1,700 nm output) is split into two beams with a beam
splitter (10% reflection, 90% transmission). The high-intensity beam is sent
through a tunable bandpass filter (Fianium Superchrome, central wavelength
position between 400 and 850 nm and bandwidth 5–50 nm). The low-intensity
beam passes through a variable neutral density (optical density 0.1–2.0) filter for
further attenuation and recombines with the filtered high-intensity beam through
an additional beam splitter. The recombined beam is then spatially filtered and sent
through a KG2 filter to remove mid-infrared radiation. A circular beam block
removes the central part of the beam. The remaining beam passes through the
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outer part of a water immersion objective lens (Leica HPX Plan APO � 63, 1.2 W)
and focuses onto the upper surface of the sample coverslip. The beam obstruction
ratio is chosen such that the incident beam undergoes total internal reflection at the
coverslip surface. The scattered light is collected through the inner part of the
microscope objective and fiber coupled (OceanOptics QP50-2-VIS-BX) into a
spectrometer (OceanOptics QE65000, spectral range: 300–1,100 nm) for spectral
analysis. In addition to the supercontinuum source, a halogen lamp in Koehler
illumination can be employed for wide-field illumination of the object plane. A
schematic of the setup is shown in Supplementary Fig. 11.

Electron microscopy. TEM images of gold NP aggregates on a holey carbon film
(Agar Scientific AGS147) were taken in a FEI Titan3 scanning transmission elec-
tron microscope operated at 300 kV, in which a small probe (B0.1 nm in diameter)
was rastered across the sample and the scattered electron beam collected by an
annular detector (annular dark-field imaging). With a sufficiently high inner col-
lection angle (460 mrad) of the high-angle annular dark-field image, the scattered
intensity is largely incoherent (there are no contrast reversals) and intensity may be
readily interpreted: when the atomic columns of a crystal are aligned with the
electron beam, the bright peaks correspond to the atomic columns. Low Z elements
or thin regions appear darker and the vacuum is black (zero intensity). A Hitachi
S-5500 in-lens field emission scanning electron microscope was used to acquire
scanning electron microscopy images of gold NP aggregates deposited on a
p-doped silicon wafer (Sigma-Aldrich 647764) and gold NP dimers on an
ITO-coated coverslip (acceleration voltage 3 kV).

Numerical simulations. Far-field extinction spectra, near-field distributions and
phase maps were calculated by numerical simulations using the full electrodynamic
boundary-element method33,34. The method is based on the solution of Maxwell’s
equations for inhomogeneous media characterized by a local dielectric function in
terms of surface-integral equations evaluated at the interfaces. The electromagnetic
field is then calculated in terms of the induced boundary charges and currents,
which are obtained through discretization of the surface integrals and solution of
the resulting matrix equations. A sufficiently large number of discretization points
were chosen to ensure that the results are fully converged. A dielectric constant of
1.77 was assumed for water.
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